Proposed Item for Biobased Designation The following biobased product information has been collected to support item designation by USDA for the BioPreferred Program. This summary reflects data available as of December 3, 2007. Title: Thermal Shipping Containers - Durable **Description:** Insulated containers designed for shipping temperature-sensitive materials. These are thermal shipping containers that are designed to be reused over an extended period of time. **Title:** Thermal Shipping Containers – Non-Durable **Description:** Insulated containers designed for shipping temperature-sensitive materials. These are thermal shipping containers that are designed to be used once. **Companies Supplying Item:** 2 company supplying Thermal Shipping Containers have been identified through internet searches, manufacturer's directories, trade associations, and company submissions. **Industry Associations Investigated:** The following industry associations have been investigated for member companies supplying Thermal Shipping Containers: - United Soybean Board - American Soybean Association - Polyurethane Foam Association - Thermal Insulation Manufacturers and Suppliers Associations - AC&R Insulation Associations - North American Insulation Manufacturers Association - National Insulation Association **Commercially Available Products Identified:** Of the companies identified, 3 Thermal Shipping Containers are commercially available on the market. **Product Information Collected:** Specific product information including company contact, intended use, biobased content, and performance characteristics have been collected on 3 Thermal Shipping Containers. **Industry Performance Standards:** Product information submitted by biobased manufacturers and suppliers indicate that have typically been tested to the following industry standards: - ASTM International #D4236 Standard Practice for Labeling Art Materials for Chronic Health Hazards - ASTM International #D963 Specification for Copper Phthalcoyanine Blue Pigment **Samples Tested for Biobased Content:** 2 samples of Thermal Shipping Containers have been submitted to independent laboratories for biobased content testing as specified by ASTM standard D6866-04. **Biobased Content Data:** Results from biobased content testing of Thermal Shipping Containers indicate a range of content percentages from 24% minimum to 85% maximum biobased content as defined by ASTM D 6866-04. A detailed distribution of biobased content levels is included as Appendix A. **Products Submitted for BEES Analysis:** Life-cycle cost and environmental effect data for 2 Thermal Shipping Containers have been submitted to NIST for BEES analysis. **BEES Analysis:** The life-cycle costs of the submitted Thermal Shipping Containers range from 17.16 minimum to 18.75 maximum per usage unit. The environmental scores range from 0.0509 minimum to 0.0530 maximum. A detailed summary of the BEES results is included as Appendix B. ## Appendix A - Biobased Content Data ## **Thermal Shipping Containers** | | Company | Product | C14 | BEES | |---|---------|-----------|-----|------| | 1 | YV65 | YV65-0004 | 24 | Yes | | 2 | Q93N | Q93N-0002 | 85 | | | 3 | YV65 | YV65-0005 | | Yes | ## **Appendix B - BEES Analysis Results** Functional Unit: 1 Container # **Environmental Performance** Note: Lower values are better | Category | YV65-0004 | YV65-0005 | |-----------------------|-----------|-----------| | Action Co. | 0.00000 | 0.0000 | | Crt. Ar Politicis-0% | 0.0005 | 0.0004 | | Ecolog. Texicity - 7% | 0.0040 | 0.0031 | | Eutrophication-6% | 0.0042 | 0.0060 | | Foosil Fuel Dept10% | 0,0065 | 0.0025 | | Global Warming-23% | 0.0057 | 0.0040 | | | 0.0000 | 0.0000 | | | 0.022) | 0.0220 | | Indoor As-S% | 0.0000 | OLO CO | | Ozone Depletion-2% | 0.0000 | 0.0000 | | S184-43 | 0.003 | illings: | | Water latake-015 | 0.0092 | 0.0141 | | Sum | 0.0509 | 0,0530 | | Thermal Shipping Containers | | | | | |--|---|--|--|--| | Impacts | Units | YV65-0004 | YV65-0005 | | | Acidification Criteria Air Polutants Ecotoxicity Eutrophication Fossil Fuel Depletion Global Warming Habitat Alteration Human HealthCancer Human Health NonCancer Indoor Air Quality Ozone Depletion Smog Water Intake Functional Unit | millimoles H ⁺ equivalents microDALYs g 2,4-D equivalents g N equivalents MJ surplus energy g CO ₂ equivalents T&E count g C ₆ H ₆ equivalents g TVOCs g CFC-11 equivalents g NO _x equivalents liters of water | 3.49E+03
1.05E+00
4.70E+01
1.34E+01
1.24E+01
5.03E+03
0.00E+00
1.45E+01
2.28E+04
0.00E+00
2.17E-04
3.40E+01
6.08E+02 | 3.15E+03
8.61E-01
3.59E+01
1.92E+01
8.86E+00
3.51E+03
0.00E+00
1.39E+01
2.10E+04
0.00E+00
2.16E-04
3.49E+01
9.32E+02 | | ¹ Following are more complete descriptions of units: Acidification: millimoles of hydrogen ion equivalents; Criteria Air Pollutants: micro Disability-Adjusted Life Years; Ecological Toxicity: grams of 2,4-dichlorophenoxy-acetic acid equivalents; Eutrophication: grams of nitrogen equivalents; Fossil Fuel Depletion: megajoules of surplus energy; Global Warming: grams of carbon dioxide equivalents; Habitat Alteration: threatened and endangered species count; Human Health-Cancer: grams of benzene equivalents; Human Health-NonCancer: grams of toluene equivalents; Indoor Air Quality: grams of Total Volatile Organic Compounds; Ozone Depletion: grams of chloroflourocarbon-11 equivalents; Smog: grams of nitrogen oxide equivalents; and Water Intake: liters of water. ## Economic Performance Alternatives | Category | YV65-0004 | YV65-0005 | |-------------------|-----------|-----------| | First Cost | 17.18 | 18.75 | | Future Cost- 3.0% | 0.00 | 0.00 | | Sum | 17.16 | 18.75 | ^{*}This is a consumable product. Therefore, future costs are not calculated. # Global Warming by Life-Cycle Stage ## Alternatives #### Note: Lower values are better | Calegory | YV65-0004: | YV65-0005 | |-------------------|------------|-----------| | 1. Raw Materials | 4375 | 2881 | | 2. Manufacturing | 466 | 458 | | 3. Transportation | 187 | 187 | | 4. Use | 0 | 0 | | 6. End of Life | 0 | Ö | | Som | (0)27 | 3513 | # Human Health Cancer by Sorted Flows* Alternatives Note: Lower values are better | Gategory | YV65-0004 | YV65-0005 | |--------------------------------|-----------|-----------| | Consta-(b) Dixina (majasida | 10.39 | 10.32 | | Cancer-(v) Arsenic (As3+, As5+ | 1.59 | 1.50 | | Cancer-(w) Phenol (C8H5OH) | 1.44 | 1.18 | | Cancer-(a) Arsenic (A.s.) | 0.72 | 0.04 | | Cancer-(a) Carbon Tetrachiald | 0.13 | 0.13 | | All Others | 0.28 | 0.17 | | Sum | 14.82 | 13.04 | ^{*}Sorted by five topmost flows for worst-scoring product ## Human Health Noncancer by Sorted Flows* ### Alternatives Note: Lower values are befor | The state of s | | | | | |--|-----------|-----------|--|--| | Category | YV65-0004 | YV65-0005 | | | | Noncancer-(a) Dioxins (unspeci | 13,083,94 | 13,007.49 | | | | Noncancer-(a) Marcury (Hg) | 6,276.76 | 4,686.88 | | | | Noncancer-(a) Lead (Pb) | 1,625.63 | 1,533.72 | | | | Noncancer-(w) Barlum (82++) | 477.75 | 430.33 | | | | Noncarcer-(w) Lead (Pb++, Pb4+ | 325.91 | 286.17 | | | | All Others | 1,014.60 | 1,013.03 | | | | Sum | 22,804.60 | 20,859.60 | | | ^{*}Sorted by five topmost flows for worst-scoring product